

Impacts of Global Environmental Change on Human Nutrition

Sam Myers, MD, MPH

Harvard Food Research Symposium

27 February, 2015

Harvard University Center for the Environment

— Rice, Japan

Field Peas, _ Australia

Wheat,
Australia

Sorghum, Arizona

Maize, Illinois

Soybean, Illinois

Data Summary

Table 1: Characteristics of agricultural experiments

Crops	Country	Treatments used	Years grown	# of Replicates*	# of Cultivars	CO ₂ ambient/elev (ppm)
Wheat						
Site 1:	Australia	2 water levels, 2 N treatments, 2 Sowing times	2007-10	4	8	382/546-550
Site 2:	Australia	1 Water level, 1 N treatment 2 Sowing times	2007-9	4	1	382/546-550
Field Peas	Australia	2 water levels	2010	4	4	382/546-550
Rice						
Site 1:	Japan	1 N treatment, 2 warming treatments	2007-8	3	3	376-379/570-576
Site 2:	Japan	3 N treatments, 2 warming treatments	2010	4	18	386/584
Maize	U.S.	2 N treatments	2008	4	2	385/550
Soybeans	U.S.	1 treatment	2001, 02, 04, 2006-08	4	7	372-385/550
Sorghum	U.S.	2 water levels,	1998-99	4	1	363-373/556-579

^{* &}quot;# of replicates" refers to the number of identical cultivars grown under identical conditions in the same year and location but in separate FACE rings

- 41 Cultivars across 7 sites on 3 continents for 6 crop types over
 10yrs- 1152 crop samples
- 286 % experiments+pooled replicates (ambient versus elevated CO2)
- " > 10X all previously published data combined

Unlimited Pages and Expanded Features

Increasing CO₂ threatens human nutrition

Samuel S. Myers^{1,2}, Antonella Zanobetti¹, Itai Kloog³, Peter Huybers⁴, Andrew D. B. Leakey⁵, Arnold J. Bloom⁶, Eli Carlisle⁶, Lee H. Dietterich⁷, Glenn Fitzgerald⁸, Toshihiro Hasegawa⁹, N. Michele Holbrook¹⁰, Randall L. Nelson¹¹, Michael J. Ottman¹², Victor Raboy¹³, Hidemitsu Sakai⁹, Karla A. Sartor¹⁴, Joel Schwartz¹, Saman Seneweera¹⁵, Michael Tausz¹⁶ & Yasuhiro Usui⁹

Results Summary

ow significant reductions in iron and zinc

- C₃ grains show significant reductions in protein
- C₄ crops less affected
- Roughly 2.75 billion people living in 50 countries receive at least 70% of their dietary zinc and/or iron from C3 crops and will be placed at significant risk
- " Baseline of 2 billion deficient 63 million LY lost

Unlimited Pages and Expanded Features

ary Analysis of Implications for Global Zinc Deficiency

(Paper in Review: Not for Dissemination)

Click Here to upgrade to Unlimited Pages and Expanded Features

RESEARCH ARTICLE

Do Pollinators Contribute to Nutritional Health?

Alicia M. Ellis¹, Samuel S. Myers^{2,3}, Taylor H. Ricketts¹*

Altered risk of vitamin A deficiency in populations from four countries as a result of pollinator declines

n Review: Not for Dissemination

Preliminary Estimates for Complete Pollinator Loss:

- 51M people in developing countries would become newly deficient in Vitamin A, 194M vulnerable people already below EAR would lose over 5% of vitamin A supply
- " 168M people would become newly deficient in folate while 515M people would become more vulnerable
- Pollinator loss would result in declines in fruit, vegetables and nuts and seeds of 24%, 20%, and 22% respectively. 1.4 million excess deaths annually
- " Roughly 27 million DALYs annually >1% increase in GBD

car: Makira Protected Area

Wildlife Populations

- Transect-based surveys
- " Grid-arrays of camera traps

Nutritional Status

- What people eat: dietary calendars and intrahousehold allocation, 750 subjects
- "Whates in the food: food composition analysis
- " How children grow: anthropometry
- "What in the people: biomarkers (iron, zinc, vitamin A, omega-3, vitamin B12, calcium etc)
- "Blood spots for zoonotic disease transmission
- " Malaria parasitology
- " Fecal samples for parasites, microbiome
- " Breast milk samples for nutrients

Unlimited Pages and

for micronutrient nutrition in Madagascar

Darwin Initiative Project

Marine fish consumption may comprise, under certain circumstances in certain nations, as much as 55% of protein intake, 16% of caloric intake, 16% of iron intake, 19% of zinc intake, 66% of vitamin A intake, 91% of vitamin B12 intake and 100% of omega-3 fatty acid intake.

Fisheries Management to Health Outcomes: Global Study—Wellcome Trust

THANK YOU!

Click Here to upgrade to Unlimited Pages and Expanded Features

Nutritional Epidemiology

Micronutrient Deficiency

Ecology Modeling

Environment & Health

Climate Science

Global health Epidemiology

Statistics

Plant physiology Health